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Abstract. This research addresses the issue of building home automa-
tion systems reactive to voice for improved comfort and autonomy at
home. The focus of this paper is on the context-aware decision process
which uses a dedicated Markov Logic Network approach to benefit from
the formal logical representation of domain knowledge as well as the abil-
ity to handle uncertain facts inferred from real sensor data. The approach
has been experiemented in a real smart home with naive and users with
special needs.
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1 Introduction

As the development of Smart Homes (SH) has gained a growing interest among
many communities — such as medicine, architecture, computer sciences, etc. —
two major challenges have emerged in the area of Ambient Intelligence. Firstly,
the need for knowledge representation models featuring high readability, modu-
larity and expressibility. Secondly, the requirement to develop decision making
methods that can leverage knowledge models to take context — the particular
situation under which a decision is taken — and its uncertainty into account.
Indeed, in most real cases context is inferred from sources affected by uncertainty.

In the literature, logical models, mostly ontologies and logic rules, seem to
have reach a consensus due to the high readability and expressibility they of-
fer. For instance, the Open AAL platform [25] uses an ontology that describes
in-home entities belonging to low and high abstraction levels. The framework de-
signed around this ontology is appropriate to facilitate the integration of devices
from different providers, as they share a common taxonomy, and the implemen-
tation of computational methods to make context inference. The independence
between knowledge representation and inference methods guarantees modular-
ity, however it does not take advantage of the reasoning capacities supported
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by logical reasoners, as the only purpose of the ontology is to be an artefact of
integration. Chen et al. [4] have proposed a method to perform activity recogni-
tion in home, an important element of context awareness, by using subsumption
checking in an ontology, but uncertainty is not supported in this work. A more
general approach was designed by Liao [15], in which some context elements,
such as level of risk, are defined through logic rules using RDF-based events to
perform activity recognition. However, uncertainty of the information sources
is not considered even if a prior probability of risk is estimated. Answer Set
Programming (ASP) is another logic approach for representation and reasoning
that has been applied by Mileo et al. [17] to estimate the evolution of the in-
habitant’s health state. They present a framework that can properly deal with
reasoning under incompleteness and uncertainty. Furthermore, the knowledge
encoded in the ASP rules could be integrated into an ontology as well. Although
their approach is very relevant for context recognition, they have not developed
formal decision models containing essential elements such as utilities, risks and
actions. On the side of decision methods for SH dealing with uncertainty, sev-
eral Bayesian approaches have been suggested, as in the SOCAM project [7].
Influence diagrams [10], which are based on Bayesian networks, have been also
applied to model the causal relation among decision actions, uncertain variables,
risk, and utilities [20, 5]. However in these works, the decision process is not sup-
ported by a formal knowledge representation that can be exploited in other tasks
besides decision.

It seems that there exists a gap between the development of formal models
to represent knowledge in pervasive environments and the methods for decision
making that must act under uncertain information. In this paper, we propose an
approach involving the representation of concepts by means of ontologies and a
set of logical rules. In the decision stage, a part of the logical rules is employed
to construct an influence diagram based on Markov Logic Networks (MLN), a
statistical method that makes probabilistic inference from a model consisting of
weighted logic rules. The rest of this paper describes the SH context in Section 2
and the framework in Section 3. Section 4 details the decision making model
and Section 5 summarises experiments conduced in a real smart home. Finally,
a brief discussion is given Section 6.

2 The Smart Home context

The typical smart homes considered in the study are the one that permit voice
based interaction. There is a rising number of such smart homes [11, 2, 8, 6, 14]
that are particularly adapted to people in loss of autonomy [21]. Typically, such
smart homes are multi-rooms and equipped with sensors and actuators such
as infra-red presence detectors, contact sensors. . . This kind of smart home can
support daily life by taking context sensitive decisions based on the current
situation of the user. More specifically, the smart home can be reactive to vocal
or other commands to make the most adequate action based on context, and
can act pro-actively by recognising a specific situation in which an action must
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be made (e.g., for security issue). To illustrate this support, let’s consider the
following two scenarios:

Scenario 1 The inhabitant wakes up at night and utters the vocal order
“Turn on the light”. This simple command requires context information (loca-
tion and activity) to realize which light to turn on and what the appropriate
intensity is. In this case, the system decides to turn on the bedside lamp with a
middle intensity since the ceiling light could affect her eyes sensitivity at that
moment.

Scenario 2 The inhabitant returns to her apartment after shopping, forgets
to lock the door, and does her usual activities until night. She prepares to sleep
and turns all the lights off but the bedside lamp as she usually reads before
sleeping. After some minutes, she turns off the lamp and, from the sequence of
her interactions with the environment, the system recognizes that she is about to
sleep. The unlocked main door represents a relatively dangerous situation.The
system could send a message through a speech synthesizer – considering the
risk of interrupting her rest– to remind her to close the door.

From these scenarios it can be noticed that contextual information, such as
location and activity, play a major role in delivering the appropriate support to
the user. In this paper, Location and Activity are defined as follows:

Definition 1 (Location). l(t) ∈ L, where L is the set of predefined locations
in the SH and t ∈ N is the time, specifies where the inhabitant is located.

In this work, a specific area corresponds to a room and we assume a single
inhabitant in the environment.

Definition 2 (Activity). Routine activities performed during daily life; such
as, sleeping, cooking, or cleaning. In an instant t the activity might be undeter-
mined; so an activity occurrence, a is defined in an interval of time, A(tbegin, tend).
Thus A : tb, te → a, tb, te ∈ N and tb < te

Moreover, much more information can be inferred from the raw data such as
agitation, communication, etc. They are defined as sources of information:

Definition 3 (Source of Information). The system contains a set of vari-
ables V that describes the environment. A source of information is a variable
Vi ∈ V with domain Dom(Vi) representing the information provided by a sensor
or an inference process i.

Definition 4 (System state). If Υ is the set of possible values of V , a system
state is an assignment v ∈ Υ making V = {V1 = v1, V2 = v2, ..., Vn = vn}

The Situation is then defined by:

Definition 5 (Situation). A situation S ⊂ Υ is defined by a set of con-
straints C = {Ck11 , Ck22 , ..., Ckmm }, where each constraint Ckii establish a set
Di ⊂ DOM(Vki) to constrain the value of a source of information Vki . Thus
S = {v/∀Ckii ∈ C, vki ∈ Di}
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For example, in Scenario 2 we have : V1, V2 and V3,...,n, which are the states
of the main door, the user’s location and the states of the blinds and lights. A
situation can be defined by constraints, C1

1 , C
2
2 , . . . , C

n
n , holding the following

sets: D1 = {open}, D2 = {¬kitchen}, D3,...,n = {off}. A situation is recognized
when all the lights are off, the blinds are closed, the front door is open and the
person is not in the kitchen (assuming the front door is in the kitchen).

Definition 6 (Temporal Situation). A temporal situation R, is defined by a
set of constraints T = {T1, T2, ..., Tm}, where each Tk is a tuple composed of a
pair of situations (S1

k, S
2
k) and a temporal constraint r between S1

k and S2
k.

Consider T1 =< S1, S2, r > with r = [ti, tj ], a temporal situation is recognized
when ti 6 t2S − t1S 6 tj where tiS is the occurrence time of Si. r can also be a
qualitative constraint such as after(S1, S2) or order(S1, S2, S3). For more details
about temporal representation and reasoning the reader is referred to [1]. In the
rest of the paper we refer to temporal situations simply as situations.

The elements defined above compose the context that we define as follows:

Definition 7 (Context). Set of informations characterizing the circumstance
under which an inference is made.

The main usage of context is disambiguation. When a situation is recognized,
several decisions can be made with different effects. The context provides the
complementary information to evaluate the circumstance in terms of risk (safety)
and utility (safety, efficiency, comfort. . . ). These two notions are defined below:

Definition 8 (Risk). The risk is the probabilistic measure that a given action
would have a negative outcome in the situation under consideration.

Though risk definition varies according to the domains, in decision making,
risk is often a consequence of uncertainty which is evaluated by enumerating all
the possible outcomes with their probability and their consequences.

Definition 9 (Utility). The utility U ∈ [0, 1] is the degree of preferences of a
system state caused by applying an action decided by the decision making system.

Under uncertainty, an action can have numerous effects. If the effect leads
to a negative outcome, U takes a negative value. There is thus a relationship
between U and the risk: to compute risk for a given action, the probability of
all the unwanted states (i.e., those with a negative value) must be computed.

For instance, in Scenario 1 the situation which triggers the decision making is
the recognition of the voice order “turn on the light”. The context is the location
(bedroom), the time (middle of the night) and the activity (sleeping). The action
to make could be to light on the ceiling light or the bedside lamp or both. The
effects could be do decrease or increase comfort. Thus the risk of each action is
given by its probability of having an unwanted effect (here, decrease comfort).
The utility is the numerical value associated to each effect.

It must be emphasized that the choice depends on the context. Indeed, in
the case of Scenario 1, as the person has just awoken in the dark, the bedside
lamp would be the best choice to avoid dazzling, but in a different context (e.g.,
when tidying up) the ceiling could be the best choice.
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3 The Voice Controlled Smart Home System

The smart home system we are considering in the study has been developed
in the Sweet-Home project[24]. The reasoning capabilities of the system are
implemented in the intelligent controller depicted in Figure 1. The bottom of
the figure shows external systems that are connected to the controller to gather
streams of data and send orders to the home automation system. All these
streams of information are captured and interpreted to recognize situations and
makes decisions.

The estimation of the current situation is carried out through the collabo-
ration of several processors, each one being specialized in a specific source of
information. All processors share the knowledge specified in both ontologies and
use the same repository of facts. Furthermore, the access to the knowledge base
is executed under a service oriented approach that allows any processor being
registered to be notified only about particular events and to make inferred infor-
mation available to other processors. This data and knowledge centred approach
ensures that all the processors are using the same data structure and that the
meaning of each piece of information is clearly defined among all of them.

We have considered that the main aspects for situation recognition are the
location of the inhabitant and the current activity. These informations are useful
to reduce ambiguity in the decision making process. Other works have also reck-
oned location and activity as fundamental for context-aware inference [17, 23]. In
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Fig. 1. The Intelligent Controller Diagram.
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order to perform location and activity inference, two independent modules were
developed and integrated in the framework. The former applies a method based
on the modelling of the links between sensor events and location assumptions by
a two-level dynamic network. Data fusion is achieved by spread activation on the
dynamic network. The second module uses a classifier, based on Markov logic
networks, to carry out activity recognition. Due to space limitation the reader
is referred to [3] for further details.

The intelligent controller performs inference in several stages, from raw input
data until the evaluation of situations. Each event is produced by the arrival of
a sensor information. These events are considered of low level as they do not
require inference. Once they are stored in the facts base, processing modules are
executed sequentially (e.g., location then activity then situation). Thus, each
inference corresponding to a high level event is stored in the database and used
subsequently by the next modules. Within the controller architecture, other in-
ference modules can be added without compromising the processing of the other
components.

The knowledge of the controller is defined using two semantic layers: the
low-level and the high-level ontologies. The two ontologies were implemented
in OWL2, not only for domain knowledge representation, but also for storing
the events resulting from the processing modules. Furthermore, situations are
defined within the ontologies allowing description logic reasoners to evaluate if
a situation is happening. Consequently, the importance of the ontology goes
beyond the mere description of the environment.

The low-level ontology is devoted to the representation of raw data and
network information description. State, location, value and URI of switches and
actuators are examples of element to be managed at this level. The high-level
ontology represents concepts being used at the reasoning level. These concepts
are organized in 3 main branches: the Abstract Entity, the Physical Entity, and
the Event concept that represents the transient observations of one abstract
entity involving zero or several physical entities (e.g., at 12:03 the dweller is
sleeping). Instances in the high-level ontology are produced by the inference
modules (e.g. activity, location, and situations) after treating information coming
from sensors. This separation between low and high levels makes possible a higher
re-usability of the reasoning layer when the sensor network and the home must
be adapted [13].

As situation are defined as temporal patterns of the system state, ontolo-
gies provide an appropriate foundation for situation recognition since they store
all the facts (i.e., the system state) and a complete semantic description of the
environment as well. Furthermore, temporal representation can be achieved by
means of role properties among event concepts defining temporal relations such
as previous and next which, through chaining property of OWL2, can generate
the after and before relations. Under some restrictions, Datalogs describing sit-
uations as logic rules can be transformed in description logic and written on
ontologies [9]. These rules are built using the Semantic Web Rule Language
(SWRL). However, the scope of this approach is very limited as it does not al-
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low to specify complex definitions. But, even when it is limited to safe rules, it
overcomes several restrictions of description logics while having the definitions
still as part of the ontology. In addition, SWRL built-in functions further extend
the semantics of context definitions.

For instance, the situation in which a person is leaving her house without
having closed her windows can be described by the SWRL rule 1 while the
situation in scenario 2 can be modelled by rule 2.

Rule 1 DeviceEvent(?d), has associated object(?d, door), takes place in(?d, kitchen),

state value(?d, open), Window(?w), located in(?w, bedroom),Application(?a),

has application(?w,?a),curret state(?a,on), swlrb:moreThan(sqwrl:count(?w), 1),

→ current state(BedroomWindowsOpen, detected)

Rule 2 DeviceEvent(?l), has associated object(?l, light), takes place in(?l, bedroom),

state value(?d, off), Window(?w), located in(?w, bedroom),Application(?a1),

has application(?w,?a1),curret state(?a1,on), swlrb:equals(sqwrl:count(?w), 0), Blind(?b),

located in(?b, bedroom),Application(?a2), has application(?b,?a2),curret state(?a2,on),

swlrb:equals(sqwrl:count(?b), 0), Door(?d), located in(?d, kitchen),Application(?a3),

has application(?bd,?a3),curret state(?a3,on), swlrb:equals(sqwrl:count(?d), 1)

→ current state(MainDoorOpen, detected)

4 Decision Making using Markov Logic Network

The decision making module is the main component of the intelligent controller.
When a situation is recognized, this module employs the high level knowledge
in order to construct dynamically a decision model that takes into account the
context and its degree of uncertainty. In this section we briefly describe the
decision problem by influence diagram models and how it has been modelled by
Markov Logic Network.

4.1 Modelling the decision making by Influence Diagrams

Influence diagrams [10] are probabilistic models used to represent decision prob-
lems. They extend Bayesian networks – composed only of state nodes – by the
inclusion of two types of node: action and utility. An action node is a variable
corresponding to a decision choice (e.g., turning the light on or warning the user).
The state nodes represent the variables in the problem domain that are affected
by the actions. Finally, utility nodes are variables that represent the utility value
obtained as consequence of applying the decided actions. For instance, turning
the light on at full intensity when the person is asleep would have a negative
utility.

Formally, given a set of actions A and an assignment of choices a ∈ A, the
expected utility EU for a is computed by:

EU(a) =
∑
X

P (X|a, e)U(X) (1)
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where X is a set of state nodes, U(X) is the utility value of X and e is the
evidence (e.g., the context). The process of finding the “best” decision consists
of solving the Maximum Expected Utility (MEU) problem which demands to
compute the EU of every possible assignment of abest = argmaxaEU(a).

Figure 2 shows an example of Influence Diagram, based on the scenario 1.
In this case, the setting of action variables, represented by rectangular nodes,
indicate which lights are operated and their intensity. Oval nodes are the state
nodes, some of which are affected by the decision, while the others belong to the
context (within the dashed area). Two variables influence directly the utility:
the comfort of the inhabitant and the suitability of the activated lights location
that ideally should be the same of the inhabitant. Note that this location is not
easy to determine in some cases since the inhabitant could be moving in the SH
while uttering the vocal order.

The interest of influence diagrams is essentially its ability to easily represent
the structure of a decision problem and the dependencies between variables.
However, it is limited to propositional variables while a decision model could
benefit of relational knowledge (e.g., turning on a light next to the room of the
dweller). Yet, first order rules, though very expressive, cannot make it possible
for an expert to express uncertainty. To overcome these limitations, we propose
to model the decision process by a Markov Logic Network.

4.2 Markov Logic Networks (MLN)

MLN [22] combines first-order logic and Markov Networks, an undirected prob-
abilistic graphical model. A MLN is composed of a set of first-order formulas
each one associated to a weight that expresses a degree of truth. This approach
soften the assumption that a logic formula can only be true or false. A formula
in which each variable is replaced by a constant is ground and if it consists of a
single predicate it is a ground atom. A set of ground atoms is a possible world.
All possible worlds in a MLN are true with a certain probability which depends
on the number of formulas they agree with and the weights of these formulas.

Activity

U

Location

   Time
Evidence
Sensors

Comfort

Right

Location
Light

Area

Context

Intensity Right
Intensity

Fig. 2. Influence diagram for a decision after a vocal order is recognised.
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A MLN, however, can also have hard constraints by giving a infinite weight to
some formulas, so that worlds violating these formulas have zero probability.

Let’s consider F a set of first-order logic formulas, i.e. a knowledge base, wi ∈
R the weight of the formula fi ∈ F , and C a set of constants (in our case, input
data). During the inference process [22], every MLN predicated is grounded and
a Markov network MF,C is constructed where each random variable corresponds
to a ground atom. The probability of a possible world P (X = x) can then be
estimated using equation 2.

P (X = x) = 1
Z exp

(∑
fi∈F wini(x)

)
(2)

where Z =
∑
x′∈χ exp

(∑
fi∈F wini(x

′)
)

is a normalisation factor, χ the set of

possible worlds, and ni(x) is the number of true groundings of the ith clause in
the possible world x.

Because computing Z involve grounding the whole network in each possible
world, exact inference in MLN is intractable in most cases, so Markov Chain
Monte Carlo methods are applied [22].

MLN models can be acquired by supervised learning which consists in two
independent tasks: structure learning and weight learning. Structure can be ob-
tained by applying machine learning methods, such as Inductive Logic Program-
ming, or rules written by human experts. Weight learning is an optimisation
problem that requires learning data. Weight learning can be achieve by maxi-
mizing the likelihood wrt a learning set x. If the ith formula is satisfied ni(x)
times in x, then by using equation (2), the derivative of the log-likelihood wrt
the weight wi is given by equation (3).

∂

∂wi
logPw(X = x) = ni(x)−

∑
x′

Pw(X = x′)ni(x) (3)

Where x′ is a possible world in x. The sum is thus performed over all the
possible worlds x′ and Pw(X = x′) is P (X = x′) computed using the vector
w = (w1, . . . , wi, . . .). The maximisation of the likelihood is performed by an it-
erative process converging towards an optimal w. Unfortunately, the computing
equation (3) is intractable in most cases. Thus, approximation method are used
in practice such as the Scaled Conjugate Gradient [16].

Since a Markov network is more general than a Bayesian network, Influence
diagrams can also be implemented by means of MLN [18]. Nath et al. [19] have
proposed an algorithm that evaluates all the choices in a set of actions without
executing the whole inference process for each choice resulting in an efficient
way to estimate the optimal assignation. We have considered this approach suit-
able for implementing decision making in our framework for two main reasons:
Firstly, MLNs are 1st order logical rules which can be stored in an ontological
representation, using domain concepts in order to keep a standard vocabulary
besides achieving decision model readability. Secondly, it deals with the uncer-
tainty related to context variables.
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A MLN for the influence diagram of Figure 2 can be defined as follows:
Predicate Domain Type
Intensity {low,high} Action
LightLocation {bedroom,kitchen,toilet. . . } Action
Comfort {low,medium,high} Utility
RightArea {good,bad,acceptable} Utility
Location {bedroom,kitchen,toilet. . . } State
Activity {sleep,eat,clean,dress. . . } State

Weight Rule
3.35 LightLocation(l) ∧ Location(l) → RightArea(good)
0.12 LightLocation(l1) ∧ Location(l2) ∧NextTo(l1, l2) → RightArea(acceptable)
2.44 LightLocation(l1) ∧ Location(l2) ∧ l1! = l2 → RightArea(low)
1.46 Activity(a) ∧Agitation(a, degree) ∧ Intensity(d) → Comfort(high)
-0.79 Activity(a)∧Agitation(a, d1)∧Intensity(d2)∧d1! = d2 → Comfort(medium)
-0.09 Activity(a) ∧Agitation(a, d1) ∧ Intensity(d2) ∧ d1! = d2 → Comfort(low)

Utility Value
U(RightArea(bad))=-2 U(RightArea(fair))=0 U(RightArea(good))=2
U(Comfort(low))=-3 U(Comfort(medium))=0 U(Comfort(high))=3

Evidence
NextTo(kitchen,bedroom) NextTo(bedroom,study) Agitation(rest,low)
Agitation(sleep,low) Agitation(eat,low) Agitation(tidy,high)
Agitation(hygien,high) Agitation(dress up,high) Agitation(communication,high)

This MLN is a template for constructing Markov network modelling an in-
fluence diagram. It must be constructed dynamically since the probability of
context variables, location and activity, can not be known a priori. As shown
Figure 3, once the decision module is triggered, it gets the evidences from the
ontology instances that are used to ground the MLN and generates an influence
diagram (actually a Markov network). This grounded network is then used to
compute the action that maximize the expected utility using equation 4.

EU(a) =
∑

x∈{bad,fair,good}

P (RightArea(x) | a).U(RightArea(x))

+
∑

x∈{low,med.,high}

P (LightLocation(x) | a).U(LightLocation(x)) (4)

Markov Logic Network
 logic formulas and weights

Instantiation
Domain

Constants

Influence Diagram

Fig. 3. Influence diagram construction by MLN grounding.
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4.3 Making decision with uncertain information

As presented in Figure 1, contextual information, such as location and activity,
results from an inference process. As such, contextual information is often uncer-
tain and we assume such inferences to be provided with a probability measure.
These uncertain results are the input evidence of the decision model. But, in the
decision model, the expected utility is computed without taking the uncertainty
of the evidence into account. For instance, if the activity recognition module
gives the following activities with their probabilities: sleeping (.33), tidying up
(.34) and resting (.33), the decision module will consider only the most probable
activity and will possibly make a wrong decision. To account for the uncertainty
in the evidence, we extended the approach by using the Jeffrey’s rule [12] to esti-
mate the probability of the best action. Based on this, the probability of a state
node X (e.g., RightArea and LightLocation), given an action a, is computed
by equation 5:

P ′(X) =
∑n
i=1 P (X | Activityi, a).P (Activityi) (5)

From equations 1 and 5, EU can then be estimated by equation 6. Note that
Activity is no more included in the set of contextual evidence e.

EU(a) =
∑
X

n∑
i=1

P (X | Activityi, a, e).P (Activityi).U(X) (6)

5 Experiments

The method was experimented in real situations in a smart home with ‘typical’
naive users and users with special needs interacting with the environment. This
section describes the experimental set up and the results of the decision making
for the ‘typical’ users and some preliminary feedbacks from the users with special
needs.

5.1 Experimental set up and collected data

The experimental smart home is depicted Figure 4. It is a 32m2 flat including
a bathroom, a kitchen, a bedroom and a study, all equipped with sensors and
effectors such as infra-red presence detectors, contact sensors, video cameras
(used only for annotation purpose), etc. In addition, seven microphones were set
in the ceiling. The technical architecture of Domus is based on the KNX bus
system, a worldwide ISO standard (ISO/IEC 14543), and include several other
field buses as well, such as UPnP (Universal Plug and Play) for the audio video
distribution, X2D for the opening detection (doors, windows, and cupboards),
etc. More than 150 sensors, actuators and information providers are managed in
the flat.

The experiments consisted in following a scenario of activities without con-
straints of time or the way of performing them. During the scenario, the par-
ticipants had to utter several voice commands. A previous visit was organised
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Fig. 4. The Domus Smart Home

so that the participants find all the items necessary to perform the activities.
Many decisions were to be made by the decision module such as answering or-
ders related to giving the time or closing the blinds. Due to space limitation, we
will focus the paper on context aware decisions. In this case, 4 situations were
specifically considered when the user utters the voice order “turn on the light”.
In each situation, two lights that can be turned on, one brighter than the other:

1. Situation 1. The user is sitting eating in the kitchen, the most adequate
light is the light above the table.

2. Situation 2. The user is tidying up the bedroom, the most adequate light
is the ceiling light.

3. Situation 3. The user is washing up the dishes in the kitchen, the most
adequate light is the light above the sink.

4. Situation 4. The user is finishing her nap in the bedroom, the most adequate
light is the bedside lamp.

Moreover, the two situations described in Section 1 related to forgetting to close
a window or the front door where included in the scenario. Each time these
situation were recognized, a warning message was generated.

15 persons (including 9 women) participated to the experiment to record
sensors data in a daily living context. The average age of the participants was
38± 13.6 years (19-62, min-max). At the end of the study, 11 hours of data was
recorded (50 minutes per experiment in average).

5.2 Results of the decision making

Despite the time devoted to the experiment, the dataset was insufficient to learn
the weights of a MLN decision model. Thus, the training corpus for weight learn-
ing was the result of the simulation of 200 instances, most of which expressing
the best location and intensity but also including contradictory configurations.
For instance, if in most of the situation 1 cases, the best light is the one above
the table, a ceiling light can also be acceptable and very rarely the one above
the table is considered as a bad decision. The learned weights are the one of the
model presented in Section 4.2. From these weights it can be understood that
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Target/Hit Eat Tidy Dress Sleep Rest Hygiene Talk

Eat 9 6 0 0 0 0 0
Tidy 3 20 1 1 4 0 1
Sleep 1 2 1 10 1 0 0
Table 1. Confusion matrix of the activity recognition during decision making

the best location is always preferred while an incorrect intensity is not a high
risk for the comfort.

Despite the scenario, the participants took some liberty and in some cases
the warning situations were not recognized. The 15 instances of the warning
situation 1 and 2 were recognized 8 and 5 times respectively. For each recognized
situation, the intelligent controller acted immediately to deliver an appropriate
warning message.

As discussed before, activity recognition is a difficult task which deliver un-
certain information. In this paper, we focus strictly on the activity recognition
during a voice command whose performance is presented in Table 1. There were
60 activity instances performed during voice command, they belong to: sleeping,
eating and tidying up. However, our model has been trained to recognize seven
activities (see [3] for more details). The most important confusion is between eat-
ing and tidying up. Both activity are performed in the kitchen and share many
characteristics such as the noise produced by the dishes. The overall accuracy is
of 65% which is a reasonable rate given the poverty of the information sources.
This also shows the necessity of taking the activity uncertainty into account in
the decision model.

Table 2 shows the overall correct decision rate for each situation. The second
column shows the standard EU , for which the most probable activity is consid-
ered as true and others as false. In the third column, the EU is computed using
equation 6. In practice, the uncertainty of the location was close to 100%, thus
the uncertainty was mainly due to the activity recognition.

The worst performance is in the situation 1. This is mainly due to the con-
fusion between eating and tidying up. However, the tidying up activity was well
recognized and this explain the high accuracy for situation 2. Overall, the re-
sults with and without uncertainty are very close. They actually differs in only
5 instances out of 60. For instance, in the situation 3 for the participant 12, the

Situation/Expected Utility without uncertainty with uncertainty

Situation 1 54% 54%
Situation 2 93% 100%
Situation 3 73% 86%
Situation 4 60% 53%

Total 70% 73%
Table 2. Correct decision rate with and without activity uncertainty
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activity recognition output was : hygiene(0.20), dressing (0.16), sleeping (0.28),
and resting (0.17) while the ground truth was tidying up (0.08) in the kitchen
1. In this example, there is a high uncertainty about the actual activity, but
the most probable activities leading to a high intensity choice for the light, the
controller did choose a high intensity despite the most probable activity was
sleeping.

5.3 Preliminary Results from experiments with the aged and
visually impaired population

The method has also been applied in the same context but with aged and visually
impaired people. The aim was both to validate the technology with this specific
population and to perform a user study to assess the adequacy of this technology
with the targeted users. In this experiment, eleven participants, either aged (6
women) or visually impaired (2 women, 3 men), were recruited. The participants
were asked to perform 4 scenarios involving daily living activities and distress
or risky situations. The average age was 72 years (49-91, min-max). During this
experiment, 4 hours and 39 minutes of data was collected including the same
sensors as the one previously described. All the participants went through a
questionnaire and a debriefing after the experiment. At the time of writing, we
are still analysing the results but overall, none of the aged or visually impaired
persons had any difficulty in performing the experiment. They all appreciated
to control the house by voice.

6 Discussion and Future Work

Dealing with context in pervasive environments involves treating uncertainty,
imprecision, and modeling complex relational information; and so far, not a sin-
gle method can overcome all these problems. Therefore, Ambient Intelligence
projects must rely on the application of several methods sharing a common base
and serving each one a specific purpose. Our proposed framework is an attempt
towards this direction. The system we developed integrates several components
that are devoted to specifics aspects of a smart homes. Thus, the whole frame-
work covers the requirements of expressibility and uncertainty treatment.

Decision making by means of Markov logic networks presents many advan-
tages. First of all, MLN relying on a formal logic representation which is particu-
larly suited to Ambient Intelligent systems where knowledge is often represented
by means of logic. When possible, this permits translation from one represen-
tation to another to perform, for instance, addition of relational knowledge as
expert knowledge in the MLN structure learning. In this perspective, the use of
a formal domain knowledge description and logic-based decision method could
lead to a higher re-usability of the model in another smart home. Secondly, MLN,

1 It must be emphasized that the activity recognition is performed using a sliding
window. In this window several instances of activity can intersect, that is why a
sleeping activity and an hygiene activity can both have a high probability
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being a probabilistic model, can deal with uncertainty and make inference from
a incomplete input.

However, as most of probabilistic models, MLN requires a considerable amount
of data to estimate the optimal parameters. Unfortunately, corpora on pervasive
environments with annotated data useful for decision making is rarely available.
Furthermore, to the best of our knowledge there is no available corpora for deci-
sion making from vocal orders. To overcome this limitation, we took benefit from
the capacity of the MLN to handle a priori knowledge. It had been possible to
acquire the structure from expert knowledge and to estimate the weights from a
set of synthetic data. Though not ideal, given the difficulty and cost of acquiring
training data in the smart home domain this way seems promising to alleviate
the need of large volumes of training data of purely statistical methods.

The experiments carried out in a real SH platform with naive and targeted
users has shown that our approach is promising both regarding decision making
and the overall system. From this research, many studies can be conducted to
improve the decision making. Given that decision data have been acquired, the
a priori model could feed a learning with this reduced set in order to adapt the
model to the specific home environment. Furthermore, information is uncertain
in the smart home environment, thus the handling of the uncertain evidence
must be generalised. Regarding knowledge representation, a tighter integration
of the decision model with the ontology would be desirable. We consider very
interesting the possibility to check for coherence of the decision model rules by
means of an ontology reasoner. In general, this integration is not trivial as MLN
rules are defined in first-order logic, while description logic and safe rules are
only a subset of first-order logic.
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